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ABSTRACT D,#

By using the Rayleigh-Ritz method of minimizing the total DQz, DQ_

potential energy of a structural system, combined load (me-
chanical or thermal load) buckling equations are established

for orthotropic rectangular sandwich panels supported under

four different edge conditions. Two-dimensional buckling in-
teraction curves and three-dimensional buckling interaction

surfaces are constructed for high-temperature honeycomb-

core sandwich panels supported under four different edge con- Gx_
ditions. The interaction surfaces provide easy comparison of h

the panel buckling strengths and the domains of symmetrical

and antisymmetrical buckling associated with the different
edge conditions. Thermal buckling curves of the sandwich he

panels also are presented. The thermal buckling conditions Is
for the cases with and without thermal moments were found
to be identical for the small deformation theory. In sandwich

panels, the effect of transverse shear is quite large, and by ne-

glecting the transverse shear effect, the buckling loads could i
be overpredicted considerably. Clamping of the edges could

greatly increase buckling strength more in compression than J
in shear, k

KEYWORDS Sandwich panels; Mechanical buckling; kffi,ky

Thermal buckling; Buckling interaction surfaces; Buckling

interaction curves.

NOMENCLATURE
k_

Ara, Fourier coefficients of trial function for w, in.

_,j extensional stiffnesses of sandwich panel, kz, k_
lb/in.

a length of sandwich panel, in.

ao edge length of square sandwich panel, in.

_J coefficients of characteristic equations kzv
arnnkl.

Brnn Fourier coefficients of trial function for 7z,,

in ./in. £

b width of sandwich panel, in.
Mx , M,,

Cra_ Fourier coefficients of trial function for 7v*,
in./in. Mx_

D e

Ez, E_

GC=,, Gcy,

bending stiffnesses of sandwich panel, in-lb

transverse shear stiffnesses in zz, yz planes,

lb/in.

flexural stiffness parameters, _, in-lb

Young's moduli of face sheets, ib/in 2

effective transverse shear moduli of

honeycomb core, lb/in 2

shear modulus of face sheets, lb/in 2

depth of sandwich panel ----distance between
middle surfaces of two face sheets, in.

depth of honeycomb core, he = h - ts, in.

moment of inertia, per unit width, of a face

sheet taken with respect to horizontal

centroidal axis of the sandwich panel,

1 3 in4/in.I, = _t,h _ + T2ts,

index, 1, 2, 3, ...

index, 1, 2, 3, ...

index, 1, 2, 3, ...

compressive buckling load factors in x- and

9-directions, kz = Ir-_D,, k_ = lr"D*'

for a = constant

Nx--_-_2, for
shear buckling factor, kzv = Ir_D •

a = constant

modified compressive buckling load factors in

Nxa2 = kz b, k_x- and y-directions, k= = _ =

= k b, forab = ao = constant
_r2D •

modified shear buckling load factor, kzy =

= kz, b, for ab = aao= constant
lr"D*

index, 1, 2, 3, .-.

bending moment intensities, (in-lb)/in.

twisting moment intensity, (in-ib)/in.



MI, T TM$ ,M_

m

gx, g_

Nx_

gl, T TN; ,Y_

n

T

T_

t,

V

yl

½

x,y,z

7_*, %5

¢

thermal moments, (in-lb)/in.

number of buckle half waves in x-direction

normal stress resultants, lb/in.

shear stress resultant, Ib/in.

thermal forces, lb/in.

number of buckle half waves in y-direction

transverse shear force intensities, lb/in.

temperature, °F

critical buckling temperature, °F

thickness of sandwich face sheets, in.

total potential energy of sandwich panel,
in-lb

strain energy of sandwich panel, in-lb

work done by external forces, in-lb

middle surface displacement components in

x-, y-, and z-direction, in.

rectangular Cartesian coordinates

coefficients of thermal expansion, in/in-°F

transverse shear strains in xz- and

yz-plane, in./in.

numerical coefficient of N_ in 11_rnnkl

numerical factor in buckling equation, and

associated with an edge condition

numerical coefficient of N T in 11arnnkl

Poisson ratios of face sheets, also used for

those of sandwich panel

INTRODUCTION

The structural components of hypersonic flight vehicles

(e.g., spacecraft, rockets, reentry vehicles, aircraft, etc.) are

subjected to hyperthermal loadings caused by hostile aerody-
namic heating during ascent and reentry, or caused by solar

radiation during spaceflight. These structural components
have to operate at elevated temperatures and, therefore, are

called hot structures. Because of nonuniform heating (which

is magnified by the cooler substructural frames that act as

heat sinks) and the mechanical structural constraints, severe
thermal stresses could build up in those hot structures. Ex-

cess thermal loading may induce material degradation, ther-

mal creep, thermal yielding, thermal buckling, thermal crack
fracture after cool down, etc. Any disruption of the surface

smoothness of these structures (e.g., metallic thermal protec-

tion system (ref. 1) or hypersonic aircraft engine inlet struc-
tures (refs. 2, 3), etc.) caused by the above failure modes,

especially thermal buckling, could disturb the flow field, cre-

ating hot spots that could cause very serious consequences to

the structures. Thus, the thermal load is a key factor in the

design of hot structures. Reference 1 discusses various design

concepts of both hot and cryogenic structural components

for hypersonic flight vehicles. The potential candidates of
high-buckling-strength hot-structural panels (fabricated with

superalloys) for hypersonic aircraft applications are tubu-

lar panels, beaded panels, truss-core sandwich panels, hat-

stiffened panels, honeycomb-core sandwich panels, etc. (refs.

4, 5). The combined-load buckling behavior of tubular panels

was studied by Ko et al. (ref. 4) extensively both theoretically

and experimentally. The compressive buckling characteristics
of the beaded panels were investigated by Siegel (ref. 5).

Recently Ko and Jackson (ref. 6) and Percy and Fields

(ref. 7) studied the compressive buckling behavior of a hat-

stiffened panel designed for application to the hypersonic

aircraft fuselage skin panel. Furthermore, Ko and Jack-
son conducted simple analysis of thermal behavior (thermal

buckling of face sheet) of a honeycomb-core sandwich panel

(ref. 8) and compared the relative combined-load buckling
strengths of truss-core and honeycomb-core sandwich panels

(ref. 9). They also investigated the effect of fiber orientation
of a metal-matrix face sheet on the combined-load buckling

strength of honeycomb-core sandwich panels (refs. 10, 11).

Most of the past mechanical buckling analyses of sandwich
panels (refs. 4-7 and 9-12) and flat plates (refs. 13, 14) were

conducted for simply supported edge conditions because the

analysis was mathematically less involved. For the case of

clamped edge conditions, Green and Hearmon (ref. 15) stud-

ied combined loading stability of plywood plates, and Smith

(ref. 16) considered only pure shear buckling of the plywood
plates. Kuenzi, Erickson, and Zahn (ref. 17) considered also

shear stability of flat panels of sandwich construction. The

workers cited here ignored the transverse shear effect in their
analyses. King (ref. 18) analyzed the stability of clamped

rectangular sandwich plates subjected to in-plane combined

loadings, taking into account the rotational effect of the sand-
wich core. A less-compact displacement function (that could

be reduced to a simpler Green and Hearmon displacement

function (ref. 15)) was used, resulting in a very complicated

expression for the potential energy of the sandwich system.
Most of the past thermal buckling analysis was done on single

plates (refs. 19-22) or laminated composite plates (refs. 23-

27), for which the transverse shear effect may be neglected.
In the actual application of hot structural panels, most panel

boundary conditions are closer to the clamped edges rather

than the simply supported edges. Therefore, this paper will

consider the combined-load mechanical and thermal buckling

of sandwich panels under different types of edge conditions by

taking into account the transverse shear effect, and will com-

pare the buckling interaction curves and surfaces for different

edge conditions.

DESCRIPTION OF PROBLEM

Figure 1 shows the geometry of a rectangular honeycomb-

core sandwich panel having identical face sheets. The exten-

sional and bending stiffnesses of the panel will be provided by

the two face sheets only, and the transverse shear stiffnesses

by the honeycomb core only.
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Fig. 1. A honeycomb-core sandwich panel.

This type of sandwich panel, when fabricated with high-

temperature alloy (e.g., titanium alloy), becomes the so-
called hot structure and could be a potential candidate for

hypersonic aircraft structural applications (ref. 1). Figure 2
shows the sandwich panel subjected to combined compres-

sive and shear loadings in its middle plane. The conventional

Rayleigh-Ritz method of minimizing the panel total poten- Fig. 3.
tim energy will be used in the combined-load buckling anal-

ysis, accounting for the transverse shear effect (fig. 3). The
sandwich panel will be supported under four different edge

conditions:

• Case 1: Four edges simply supported (4S edge condition)

• Case 2: Four edges clamped (4C edge condition)

• Case 3: Two sides clamped, two ends simply supported

(2C2S edge condition)

• Case 4: Two sides simply supported, two ends clamped

(2S2C edge condition)

where the sidesand ends axe parallelto the x- and _-axes,

respectively.
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Deformation of a sandwich panel in =z-plane.

The problem is to study the effects of the panel edge con-

dition and the panel aspect ratio on the combined-load buck-

ling behavior of the sandwich panel. Case 1 has already been
solved and was published in reference 9. For completeness,

however, some key equations for Case 1 will be repeated in

this paper.

GOVERNING EQUATIONS

Constitutive Equations

For the classical orthotropie thick plate theory, the

thermoelastic constitutive equations for membrane forces,

moments, and the transverse shear constitutive equation may

be written as (fig. 2)

(I)

M= 1 [ D. D,2 1
"x M, i = i D2, D2z O0

.. M=,] L o o D,,
Nyx

x a (i_w _ '_ - M_ / (2)

930330 --_i/ ('_'X -- _:=z) -- _ (_ -- "/ll/Z) M; J

Fig. 2. Forces and moments acting on differential element of

a sandwich panel.
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For the sandwich panel whose extensionaland bending

stiffmessesare provided only by the two identicalfacesheets,

and the transverseshear stiffnessesonly by the honeycomb

core,the extensionaland the bending stiffnesses{4_i,D,i}

inequations (1) and (2),and the transverseshear stiffnesses

{Doz, DQ_} in equation (3) may be written as

•411 , DII]

412 , DI2 ]42] , D21 = [2t.,21.]

4_ , D22

4_ , Dss

E_
1 - v=j_vw

V_z E_z

1 - _vv=

I - _,;v_

[oo.]=oo.
where the 2 in frontof {is,la} in equation (4) isassociated

with two identicalfacesheets.

The thermal forces T r r{N_, N_, N_} and the thermal mo-

ments T 7"{M_, M_, M_) appearing in equations (I) and (2)

are defined by:

#,_, M,_ =
#_, M_ '='

G T_, (-1)' _42_ T* ]

1 - vzyvy= 1 - v=_v_= oL=

vx_Ev EV 0 a,
1 - vz_vy= 1 - v=_vy= affiy

0 0 G=y

8u 8v "2; D1L _;

J
I

:+o,,[_(_,..1][¼(_,,.11,
I

I

I
I I _-- energy termsfor mechanical
I,+_[_,(___...): _uo_n_
I I

(_ )]'oo..o..;8
- _," + -_-'_-- ÷ -E-%- I

(4) __

(6)

where i = 1, 2 are associated, respectively, with the lower

and the upper face sheets, and [ ]_ (i = 1, 2) implies that the

material properties are associated with temperature T, (i =

1, 2). The thermal force and thermal moment contributions

from the honeycomb core were neglected.

Energy Equations

Based on the small deformation theory, the strain energy

V_ of the heated sandwich panel may be written as (refs. 23,

24, 26, 27)

_,_(_)_(,_*) _(_)-N_, +_ -N;

+_._[_.(_-_..)]+_,_[_.(_-_.)]

÷_ [_(_-_..)÷_(_-_,.)]*_,
(7)

For the buckling problem, the work done I_ by the in-plane

forces to produce transverse deflection is given by

+N, _y dzdl/
(8)

The total potential energy V of the sandwich panel is then

V = Vl ..[- V2.

Panel Boundary Conditions

The sandwich panel is to be supported at its four edges

under the following four cases of boundary conditions:

For mechanical buckling:

Case 1. 4S edge condition: z = 0, a : w = Mz = 7_, = 0;

y=O,b : w= M_ =7_z =O

Case 2. 4C edge condition: x = O, a : w = _x = 7=ffi=

7_,=0; y=0, b: w=_=7=,=7_,=0

Case 3. 2C2S edge condition: x = 0, a : w = M= = 7¢, = 0;

y=0,b: w= _ =7:, =7_, =0



Case 4. 2S2C edge condition: x = O, a : w = _ = 7zz

%z=0; y=0, b: w=Mu=Tzz=O

For thermal buckling:

In addition to the above boundary conditions, the following

edge condition is to be imposed:
x = 0,a: u = v = 0; y = 0, b: u = v = 0

BUCKLING ANALYSIS

The conventional Raleigh-Ritz method of minimization of

total potential energy V will be used in the buckling analysis.

Panel Deformation Functions

For an eigenvalue solution via the Rayleigh-Ritz method,
the trial functions for the sandwich panel deformation

{w, 7=,, %, }, satisfying the boundary conditions, may be ex-
pressed in the following double Fourier series:

Case 1. 4S edge condition (ref. 9)

w(x,y) = £ £ A,.. sin m_Z _n nlrya "-g- (9)

a b

%.(x,y) = Cm. sin cos-- (11)a b
m_l _ffil

Case 2. 4C edge condition (ref. 15)

w(x,_) = sin _x'-sm _ry ,-,. -- --r- (12)sin m_rz sin n_y
O, tn a u

wtffiffi l nm l

%.(z, y) cos sin Bm sin m_z .-- -- sin --

a -b- a b
wt----I ttffiffil

_z _ry
mn T (13)

. . . _rX _ry £ £ C,.. sin __ sin __._"-y_z(z, y) =sm _- cos -_- nz.y
m.=l n=l

' lrz . _ryx-_£ sinm_rz- nlrysm _- sm -_- 2.., nCm, --a-- _ T (14)
_t_ffil "n.=l

Case 3. 2C2S edge condition (ref. 15)

_Y££ mlrz sin n_rYw(z, y) ffi sin T A.. sin --a --b (15)
m----I v*_l

%.(z,y) -- sin £.., ,., --_-- sin --_--

eo oo

_'_,--_---_ . Er_: . 'nlr_/

%,,(z, y) = COS --_-- 2._ 2..i G_m sm -'_ sm -T--

_r_ nC,_. sin -_ cos+ sin -_-

(16)

(17)

Case 4. 2S2C edge condition (ref. 15)

w(z,y) = sin ? E Am, sin m_rz . nry-- sm -- (18)
a b

_'X yrtTrz sin nTr_,7..(x, Y)= cos -- B,n. sin-- ' --a a b
_¢t_l nwl

+ sin _rx roB,., cos _ sin---g--
re.m| _t_l

7,.(Z, y)= sin _rz £ £ C,.. sin rn_rz cos n_r_yy (20)
a a b

Uniform Temperature (Zero Thermal Moments)

Itiswellknown thatthermal stressesare not caused by ex-

ternalloads but are the consequences of restrainedthermal

distortion.The intensitiesof thermal stresseswill change

when a structureisdeformed; therefore,the thermal stress

levelsare the functionsofstrains.In classicalthermal buck-

lingof a structuralpanel (under uniform temperature rise

with constrainededges),the first-orderlateraldeflectionsof

the panel willcauseonly second-ordersmall changes inthe in-

plane strains(thus,thermal stresses)at the onset of thermal

buckling (ref.28). In mechanical buckling,however, the ex-

ternalloadsare held constant during buckling. Ifthe second-

order effectisneglected,then the in-planethermal loadsmay

be consideredconstant during thermal buckling.Thus ther-

mal buckling problems would be equivalentto mechanical

buckling problems; therefore,the conventionalmethods of

structuralstabilityanalysismay be applied to the thermal

buckling analysis.

The buckling equations will be developed firstfor the

mechanical buckling under the combined loading condition

{N= -"-} -Nz, N_ ---, -N u, N= v _ -N=u}. The resulting
mechanical buckling equation could then be applied directly
to the thermal buckling of the sandwich panels with con-

straint edges under uniform panel temperature (i.e., {N= =

-N. _, N, =-N T, N._ =--NT,}, {M=T, M:, MfT,} = 0,

u=v=w=O).

Characteristic Equations in Terms of Load Factors

After substitutingthe trialdeformation functions(eqs.(9)

through (20)) into the energy equations for V_ (eq. (7)) and

I/2 (eq. (8)) (signs of forcing functions reversed), and after

performing the double integrations, the components of V_ and

V_ may be calculated for different indicial conditions under

different panel edge conditions (ref. 29).

Substituting V_ and V2 expressed in terms of Fourier coef-

ficients Amn, Bran and Cm. (ref. 29) into V, and then min-

imizing V with respect to each of {Am., Bm_, and Cm.)

according to the Rayleigh-Ritz principle,

cgV OV OV
-- = 0 (21)

_A,nn = OBm. = OC, nn

5



one obtains three homogeneous simultaneous equations (i.e.,

characteristic equations) for each indicial set of {re, n}.

Those three equations may be combined into one character-

istic equation containing only the panel deflection coefficient

Ak,. Namely,

M,,,_M 6mnM 1 AM = 0 (22)
J

k_--1 t=l

where the stiffness/geometry parameter MmnM appearing in

equation (22) is defined as

_12 f_23 n3l _21 ,.,33 _,Gmnk/11 4. _'mnkd _,_mnkt_" mnk, l -- _"mnkt_'m_tld !

- 22 .33 23 32
• s Gmn/dt'nmkt -- flnmk./Gmn/d •TI/d- x*,, / cll.m_

_F
thin plum
th_}r_ IB tl._iril_tOt_@ Illllli_ tI_EL lilrllll

"1 )]13. /_21 _32 _ Gmn/d Gntn/rd
+ a,,m_ v'm._"m,_. (23)

22 33 _33 _32 /

trlM11vlllm llllll4_ I_llL"t tllrml

where the coefficients Oa,,mM (i,j ffi 1, 2, 3) are the partial

functions of {D O, DO=, DO_, m, n, a, b, k=, k_} and their
functional forms vary with indicia] and edge conditions. For

the 4S, 4C, 2C2S, and 2S2C edge conditions there are 1, 9,
3, and 3 different sets of 'j respectively, and these areGm_kl,

defined in reference 29.

In equation (23) 7/is a numerical parameter, and in equa-

tion (22) 6,nnkt is a special delta function which is nonzero

only when m + k = odd, and n + £ = odd.

Case 1. 4S edge condition

_/ = 32 mnk£6,,,riM= (m2 _ k2)(n2 _ E) ; m + k =odd, n 4- t = odd

(24)

Case 2. 4C edge condition

O6)s " 6mnM =7/= 2 ,
,m,U[,,._+i, L2][n2+e-_]

(nt2-k2)(n_-_)[(tn+k)_-4][(tn-k)2-4][(rt+_)2-4][(t_-t)_-4] ;

m 4- k = odd, n 4- l = odd

(25)

Case 3. 2C2S edge condition

77 = 83

mnkt[2 - (n_ + t=)]
_.,,u = (m 2 _ k2)Cn2 _ t2)[Cn + 02 _ _][(n - t) 2 - _] ;

m 4- k = odd, n 4- t = odd

(26)

Case 4. 2S2C edge condition

77 = 83

mnkt[2-(m2+k2)]
 m.u = (m2_  2)(n2 _ t2)[Cm+ k)2_ 4][(m- k)2 - 4] '

m 4- k = odd, n 4- £ = odd

(27)

The characteristic equation (22) forms a system of infi-
nite number of simultaneous homogeneous equations (i.e.,

one infinite series equation for each set of {ra, n} values).

Because there is no coupling between the even case (sym-

metric buckling) and the odd case (antisymmetric buckling)

(ref. 9), those simultaneous homogeneous equations may be
divided into two groups that are independent of each other:

one group in which m 4- n is even, and the other group in
which m 4- n is odd (refs. 9, 13, 14).

For the deflection coefficients AM to have nontrivial so-

lutions under the assigned values of {k=,k_, b}, the deter-
minant of coefficients of unknown AM of the simultaneous

homogeneous equations generated from equation (22) must

vanish. The largest eigenvalue 1/k_y thus obtained will give

the lowest shear buckling load factor k=_ for given values

{k=, k_, b}. When the transverse shear effect is neglected

(eqs. (22), (23)), {k=, k_, k=_} are a function only of b and

independent of panel size. However, they will become panel-

size dependent if the transverse shear effect is considered.

In the actual eigenvalue computations, the determinants of

order 12 were found to give sufficiently accurate eigenvalue

solutions (ref. 9). These determinants are given in reference
29 for the cases ra 4- n = even (symmetric buckling) and

ra 4- n = odd (antisymmetric buckling) for different edge

conditions.

Characteristic Equations in Terms of Temperature

For thermal buckling, the main objective is to find the

buckling temperature, Tc_, rather than thermal buckling
loads. Therefore, equation (22) needs to be rewritten in terms

of temperature rather than load factors. For the uniform tem-

perature case, the thermal forces have the following forms:

N _=_= fi66a=llT (28)

which were obtained from equations (4) and (6) setting 7'1 =

T2 = T.

The coefficient amnMn appearing in equation (23) contains
thermal forcing terms (ref. 29). Thus, amnMll may be written

in two parts as

a,n_,M_ = -lla.nnu + [_(m, k)N T + ((n, t)N T] (29)

11 without the thermalwhere -_a,n,_M is the first part of a,n_M
forcing terms, _(m, k) and ((n, £) are, respectively, the nu-

merical coefficients of N T and N T, whose values change with
the indicial and the edge conditions.

In light of equation (29), equation (22) could be rewritten
as

k=l _=1



where --Mmn_t is the modified Mmn#2 in which am_il is re-

placed with _mn_t, and

P,,_nkt =-- (m, k ) ( ft l t a, + ]t l_a_ )
_?Aesa=_

(31)
J

In equation (30), both M,_ and Pm_t terms contain

material properties that are temperature dependent. Thus,

in the eigenvalue solution process using equation (30), one
has to assume a temperature Ta and use the corrrespond-

ing material properties as inputs to calculate the eigenvalue

liTer where Tcr is the buckling temperature. This iteration

process must be continued until the assumed temperature T,

approaches the buckling temperature Tc_.

Thus, in thermal buckling, the eigenvalue solution process
requires a temperature iteration process and, therefore, is

slightly different from that in mechanical buckling for which

only a one-step eigenvalue solution process is needed.

Different Face-Sheet Temperatures (Nonzero

Thermal Moments}

When face-sheet temperatures are different (i.e., T1 # T2),

the sandwich panel will be subjected not only to ther-

mal forces {g r, r TN_ ,N_} but also to thermal moments
T T T

{M], M_, M_}. The problem then becomes a bending one
and no longer an eigenvalue problem. The panel deflection
w can then be calculated in terms of Fourier coefficient Amn.

The buckling condition will correspond to that when the term
in series representation of w (associated with a particular

buckling mode shape) becomes unbounded (i.e., Amn --* co

for a given {m, n}). For this case the 4S edge condition will

be analyzed as an example.

Thermal Moments

Let the thermal moments {M_, M_v, M]_} be expressed
in double Fourier series in accordance with the deformation

functions given in equations (9) to (11) as

Oo oo

E E ..M_ = Fnm "sm mn _ (32)
a b

tm_ml tt=l

oo oo

= sin _ sm _ (33)M; EEx,- a b
m=l n=l

oo oo

M_ ---- S,,m cos _ cos _ (341a b
t'n_l n-----I

where the FouriercoefficientsFm_, Hmn, Stun are given by

,;£Fmn= _ M_ sin a dxdy (35)

4 f*f b .T. m,rx mlry

nmn = "_ Jo Jo _ sm --_ sin ....T-dxdy (36)

S=. = -_ M:_,cos_a cos--va.zay (37)

In light of the deformation functions (eqs. (9) to (11)) and
the thermal moment expressions (eqs. (32) to (34)), the en-

ergy equations (7) (setting u = v = 0) and (8) may be inte-

grated to yield the forms given in reference 29. The thermal
moment terms turned out to be linear functions of Am_, Bran,

or Cmn, and not quadratic functions of {Amn, Bran, Cmn} in

the energy expressions (ref. 29).

Nonhomogeneous Equations

After the application of the Rayleigh-Ritz method accord-

ing to equation (21), one obtains three nonhomogeneous si-
multaneous equations for each indicial set of {m, n}, which

may be combined to yield one equation in terms of Avx

(ref. 29):

oo oo

M__.%.m.Am. + _ _ 6m._A#_ = Rm.m. (38)
,*z¥ k=l p=l

where Mmnm_ is defined in equation (23) under the con-

ditions re=k, rift, _=32, and the nonhomogeneons term

R_n=n is defined by

Rm,m, = 32kz_ D*

12 33 23

amnmn ( Kmn amnmn -- Lmn amnmn )

Jmn - -22 _33 _23 _32
u,mttmnu, mntnn _ umtttnn_mnmn

13 32

_,,_.(K,.,,,am=. - Lma,,,.=.) 1 (39)
+ __22 -33 __23 __32 l

where J,n., K,,t,_, and L=_, are defined as

ylrglr n_r,,.,.(-c)+ (-r)
wl?r _?I"=_-,,...(-;-)+s.,.(-r)

(40)

(4_)

(42)

Equation (38) forms an infinite number of nonhomogeneous
simultaneous equations, each of which is associated with a

set of {m, n} values (or mode shape) for the calculation of an
infinite number of Fourier (or Ritz) coefficients Amn in the

series representation of panel deflection w(x, y) (eel. (9)).

Buckling Condition

The calculated Ritz coefficients Ann have the following

functional form:

[ ]"_'_ (43)

7



where the numerator [ ],nn contains {M_.m., R_.mn,

6,n,_t}, and the denominator A is the determinant of the
coefficients of A_ of the nonhomogeneous simultaneous equa-

tions written out from equation (38). The detailed expres-
sions of A of order 12 is shown in references 9 through II

and 29 for either symmetrical or antisymmetrica] buckling.

The mathematical meaning of the buckling state in light

of equation (43) is that the Ritz coefficient Am, becomes

unbounded (i.e., infinite panel deflection, or A --. 0). That
is, when the buckling state is reached, the term in the series

(eq. (9)) that corresponds to the particular deformation mode

shape becomes the most important term.

From the above analysis, one sees that the buckling condi-
tions for the cases with and without the thermal moments are

identical (i.e., _ = 0) under the classical small deformation
theory. Because of this finding, similar bending analyses for

nonzero thermal moments for other edge conditions were not
carried out.

NUMERICAL EXAMPLES

Physical Properties of Sandwich Panels

The sandwich panel is assumed to be fabricated with tita-
nium face sheets and titanium honeycomb core, having the

following geometrical and material properties:

Geometry: h -- 1.2 in.; t, -- 0.032 in.; a -- ao = 24 in. (for

varying b), or ob ffi a2o (for constant panel area)

Material properties:

E. = e,, lb/in2
Gfte, lb/in 2

vfy = vyz
of = o_, in/in-°F

o_, in/in-°F

sheets

70 OF I000 °F

16 x 106 10.5 x 106

6.2 × 106 4.7 x 106

0.31 0.31

4.85 x 10 -s 5.6 × 10 -6

0 0

Honeycomb core (properties at 600 °F)

Gcy, = 0.81967 x 105 lb/in 2

Gc,. = 1.81 x 105 lb/in 2

Buckling Interaction Curves

In generating the data for plotting the buckling interaction

curves,/_ was set to zero. For a given _, different values of

kz were assigned; then the corresponding eigenvalues 1/k=_

were calculated from equation (22). Typical buckling interac-

tion curves plotted in kz-kz_ space for square panel (b = 1)

are shown in figure 4. The additional set of buckling interac-
tion curves shown in broken curves is for the case when the

effect of transverse shear is neglected. For the square panels,

the buckling interaction curves for 4S, 2S2C, and 4C cases

are continuous curves of symmetric buckling. However, for
the 2C2S case, the buckling interaction curves &e composite

curves, partly for symmetric buckling and partly for anti-

symmetric buckling. Notice that the effect of the transverse
shear is quite large for the sandwich panel. Without a con-
sideration of the transverse shear effect, the sandwich panel

buckling strength could be overpredicted considerably. The

4S case has the lowest buckling strength. Through clamp-

ing two opposite edges (i.e., from 4S case to 2C2S and 2S2C

cases), the buckling strength could be enhanced considerably.

By additional clamping of the other two opposite edges (i.e.,
from 2C2S and 2S2C cases to 4C case), further improvement

of the buckling strength could be achieved. However, the im-

provement is not as large as that for the previous case (i.e.,
from 4S case to 2C2S and 2S2C cases). With or without a

consideration of the transverse shear effect, the improvement

of budding strength through edge clampings is larger in pure

compression than in pure shear.

12 [ With transverse Ihtmr effect

No transverse shear offect
/ A AnUlymmetric bucMing (m = 2, n = 1)

10 _"...... S Symmetric buckling (m ffi 1, n = 1)
-_ N x

y ... I,
r---7 ..... _ "/" -_-._--,_ ..s t--t-¢-¢--l-t

k,, , _7 _-_X.J_,S2_._.. ... t----,---4
_'_/_- S "" "', • : constant

_"k.'_.,, X "-. ".. ". b .
, ..... \s "-. ",, ",, i'"

E s "s''- "'-", "',

% ",,,
0 2 4 6 8 10 12 14 16

kxy 930331

Fig. 4. Combined load buckling interaction plots for a

honeycomb-core sandwich panel under different edge condi-
tions.

Buckling Interaction Surfaces

By using families of buckling interaction curves gener-

ated for different values of b (a = constant) and for differ-

ent edge conditions, three-dimensional buckling surfaces were

constructed in [kffi, kzy, b] space as shown in figure 5. In the

figure, the domains of symmetric and antisymmetric buck-

ling (lowest buckling modes) are also shown. Figure 5 shows
better visualization of the buckling behavior of the sandwich

panel than the traditional buckling plots of kz as a function

of b, and k:_ ss a function of b. For slender rectangular

panels (i.e., b < 1), antisymmetric bucklings occur mostly in
the compression-dominated regions. For wider panels (i.e.,

_> 1), the antisymmetric bucklings take place in the shear-

dominated regions. In the neighborhood of b = 1, the lowest

buckling modes are all symmetric (i.e., m = 1, n = 1) for
the 4S, 4C and 2S2C cases, and only for the 2C2S case, the



lowest buckling mode in the compression-dominated region is
antisymmetric (i.e., m = 2, n = 1). Such buckling behavior

also occurs in the fiat rectangular plates of b _ 1.

k 8[- A Antisymmetrlc buckling

buckllng

b _ 93033.9

II

(a) Four edges simply supported (48).

k x 11 A Antlsymmetrtc buckling
S Symmetric buckling

g

b/4 930339

a

(b) Four edges clamped (4C).

b _ 930340
_4

(c / Two sides clamped, two ends simply supported (2C2S).

Fig. 5. Buckling interaction surfaces for honeycomb-core
sandwich panels under different edge conditions (a -- con-

stant).

kx 11r

Antlsymmetrlc buckling -x _nl
Symmet

..... ....... .,y

b_ 9_a4_'

a

(d) Two sides simply supported, two ends clamped (2S2C).

Fig. 5. Concluded.

Buckling Curves for Pure Compression and Pure
Shear

The buckling surfaces shown in figure 5 were constructed
under the condition a = constant, and may not serve as ideal

design plots for aerospace structural panels, because, when

_b is changed (under a = constant), the panel weight (i.e.,
a

panel area ab) also is changed accordingly. In the aerospace
structural designs, the main objective is the structural op-

timization. That is, for a given panel weight, the objective
is to search for a panel with optimum buckling strengths (or

stiffnesses). For this reason, modified buckling load factors

k= and _l (_ = O) were recalculated as functions of b

under the condition ab = a_o= constant (instead of a = con-

stant). Figures 6 and 7, respectively, show the alternative

plots of kz as a function of b for pure compression and kffi_

as a function of b for pure shear when the panel area ab

was kept unchanged. In practical applications, the panel has
to be supported by an edge frame (cro_ section assumed

constant); therefore, the edge frame weight (or edge frame

length, Ca + b)/2ao) was also plotted in figures 6 and 7 as

a function of b. The square panel (b = 1) has the mini-

mum edge frame weight; however, it does not have the opti-
mum buckling strengths both in compression and shear. The

compressive buckling strengths (fig. 6) reached minimum at

_b = 1.6, 1.4, 2.2, and 1.0, respectively, for the 4S, 4C, 2C2S,a
and 2S2C cases. The lowest shear buckling strengths (fig.

7) occur at b = 0.9, 0.9, 1.2, and 0.7, respectively, for the
4S, 4C, 2C2S, and 2S2C cases. Figures 6 and 7 serve as de-

sign curves for selecting the desired sandwich panel geometry

(i.e., _ value). To boost the panel buckling strengths both in
compression and shear, some weight penalty resulting from



the edge frame is inevitable. The desirable high stiffness-to-

weight-ratio panel shapes will be slightly slender (b < 1),

especially in light of the compressive buckling strength.

Fig. 7. Comparison of shear

Ib = constant

3 0

930337

buckling strengths of

compression) buckling curves somewhat resemble the uniax-
ial compressive buckling (mechanical buckling) curves k= as

a function of b shown in figure 5. For buckling temperatures

higher than 1000 °F, the face sheet material property data at
1000 °F were used as inputs to equation (30) for Tc_ calcu-
lations because of the lack of material property data at high

temperatures. For the honeycomb core, the only available

material property data at 600 °F had to be used as inputs
for To calculations. The buckling temperature T_ was found

to be relatively insensitive to the material property change

with temperature.

For the present particular panel (i.e., dimensions chosen),

the thermal buckling temperatures ToT exceed the titanium

melting point (3074 °F) at the low b and gradually decrease

with the increase of b. At high aspect ratios, Tc_ for 4S

and 2C2S cases level off at about 1000 °F (below superplas-

tic temperature, 1650 °F), and for 4C and 2S2C cases, at

temperatures slightly below the melting point.

honeycomb-core sandwich panels under different edge con-

ditions (constant panel areas).

Thermal Buckling Curves

For most of the practical materials, the coupling coefficient

of thermal expansion _=v is zero. Therefore, in generating the
data for thermal buckling curves, the following conditions

were imposed: a= = a,, _ffi_ = 0 (i.e., N_ = M_ =

0), M_ = M_ = 0.

These conditionswillinduce in-planebiaxialthermal com-

pression without shear and bending. Figure 8 shows the

buckling temperature, To, plotted as a function of b, with

the panel length a kept constant. Those thermal (biaxial

9x 10 3

a = conMBnt

Edge

1
4S

1 2 3 4

b

i" 930342

Fig. 8. Thermal buckling temperatures for honeycomb-core

sandwich panels under different edge conditions (a = con-

stant).

Figure 9 shows the alternativeplotsof Tcr as a function

of b for constant-area panels (i.e.,oh = constant). The

lowest buckling temperatures for 4S, 4C, 2C2S, and 2S2C

cases are, respectively,at 1297 °F, 3702 °F (above melt-

ing point),2194 °F (above superplastictemperature), and

2205 °F (above superplastictemperature) and occur,respec-

tively,at b = 1.0,0.975,1.8,and 0.5.

For the presentsandwich panel,the actual thermal buck-

ling willtake place only for the 4S case in the region 1.5

< b < 1.8. Outside thisregion for the 4S case and for all

I0



the range of b for the other three edge conditions, no actual
thermal buckling could occur because the sandwich panel will

first undergo superplastic creep or melting.

9xlo 3

iI7 _

' iil

._ 1.75
Edge

_ __-- 1.25

_-M n mum edge // ._--_" :_''- ,

_ \ framewelght /_'- ........ _-_-_ !1.0 0 __

4S 0.5O

Superplllstlc temperature 1650 OF

930343

0.25

a+b

2a o

Fig. 9. Thermal buckling temperatures for honeycomb-core
sandwich panels under different edge conditions (constant

panel areas).

CONCLUDING REMARKS

By using the Rayleigh-Ritz method of minimizing the to-

tal potential energy of a structural system, the combined load

(mechanical or thermal) buckling equations were established

for orthotropic rectangular sandwich panels supported under

four different edge conditions. Two-dimensional buckling in-
teraction curves and three-dimensional buckling interaction

surfaces were constructed for high-temperature honeycomb-

core sandwich panels. The buckling interaction surfaces pro-

vide easy visualization of the variation of the panel buckling

strengths and the domains of buckling modes (symmetric and

antlsymmetric) with the edge condition. Furthermore, the

buckling temperature curves for the sandwich panels were

presented.

The effect of transverse shear on the buckling strength is

quite large for sandwich panels, and by neglecting the trans-
verse shear effect, the buckling strengths could be overpre-

dieted considerably. With the inclusion of the transverse

shear effect, the buckling load factors became panel-size de-

pendent in addition to panel-aspect-ratio dependent. Clamp-

ing the edges could enhance the buckling strength greatly
more in compression than in shear. Thermal buckling condi-
tions for the cases with and without thermal moments were

found to be identical for the small deformation theory.*

*The author gratefully acknowledges the contributions by Barry

Randall in setting up computer programs for the eigenvalue

extract ions.
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